Java并发编程和高并发解决方案

内容可分为:
线程安全,线程封闭,线程调度,同步容器,并发容器,AQS,J.U.C,等等

高并发解决思路与手段
扩容:水平扩容、垂直扩容

缓存:Redis、Memcache、GuavaCache等

队列:Kafka、RabitMQ、RocketMQ等

应用拆分:服务化Dubbo与微服务Spring Cloud

限流:Guava RateLimiter使用、常用限流算法、自己实现分布式限流等

服务降级与服务熔断:服务降级的多重选择、Hystrix

数据库切库,分库分表:切库、分表、多数据源

高可用的一些手段:任务调度分布式elastic-job、主备curator的实现、监控报警机制

基础知识与核心知识准备
并发高并发相关概念

cpu多级缓存:缓存一致,乱序执行优化

java内存模型:JMM规定,抽象结构,同步操作与规则

并发优势与风险

并发模拟:Postman,Jmeter,Apache Bench,代码

并发基本概念
同时拥有两个或多个线程,如果程序在单核处理器上运行,多个线程将交替的换入或者换出内存,这些线程是同时“存在”的,每个线程都处于执行过程中的某个状态,如果运行在多核处理器上,此时,程序中的每个线程都将分配到一个处理器核上,因此可以同时运行。

高并发基本概念
高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。

并发:多个线程操作相同的资源,保证线程安全,合理使用资源

高并发:服务能同时处理很多请求,提高程序性能(更多的考虑技术手段)

知识技能
总体架构:Spring Boot、Maven、JDK8、MySQL

基础组件:Mybatis、Guava、Lombok、Redis、Kafka

高级组件:Joda-Time、Atomic包、J.U.C、AQS、ThreadLocal、RateLimiter、Hystrix、ThreadPool、Shardbatis、curator、elastic-job等

基础知识
cpu多级缓存
主存和cpu通过主线连接,CPU缓存在主存和CPU之间,缓存的出现可以减少CPU读取共享主存的次数

为什么需要CPU cache:CPU的频率太快了,快到主存跟不上,这样在处理器时钟周期内,CPU常常需要等待主存,浪费资源。所以cache的出现,是为了缓解CPU和内存之间速度不匹配问题(结构:cpu -> cache -> memery).

CPU cache有什么意义:

1)时间局部性:如果某个数据被访问,name在不久的将来它很可能被再次访问。

2)空间局部性:如果某个数据被访问,那么与它相邻的数据很快也可能被访问

CPU多级缓存-缓存一致性(MESI)
MESI分别代表cache数据的四种状态,这四种状态可以相互转换

缓存四种操作:local read、local write、remote read、remote write

CPU多级缓存-乱序执行优化
在多核处理器上回出现问题

java内存模型(java memory model,JMM)
java内存模型-同步八种操作
lock(锁定):作用于主内存的变量,把一个变量标识为一条线程独占状态

unlock(解锁):作用于主内存变脸个,把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定

read(读取):作用于主内存变量,把一个变量值从主内存传输到线程的工作内存中,以便随后的load动作使用

load(载入):作用于工作内存的变量,它把read操作从主内存中得到的变量值放入工作内存的变量副本中

use(使用):作用于工作内存的变量,把工作内存中的一个变量值传递给执行引擎

assign(赋值):作用于工作内存的变量,它把一个从执行引擎接收到的值赋值给工作内存的变量

store(存储):作用于工作内存的变量,把工作内存中的一个变量的值传送到主内存中,以遍随后的write的操作

write(写入):作用于主内存的变量,它把store操作从工作内存中的一个变量的值传送到主内存的变量中

java内存模型-同步规则
如果要把一个变量从主内存中复制到工作内存,就需要按顺序的执行read和load操作,如果把变量从工作内存中同步回主内存,就需要按顺序的执行store和write操作。但java内存模型只要求上述操作必须按顺序执行,而没有保证必须是连续执行
不允许read和load、store和write操作之一单独出现
不允许一个线程丢弃它的最近assign的操作,即变量在工作内存中改变了之后必须同步到主内存中
不允许一个线程无原因的(没发生过任何assign操作)把数据从工作内存同步回主内存中
一个新的变量只能在主内存中诞生,不允许在工作内存中直接使用一个未被初始化(load或assign)的变量。即就是对一个变量实施use和store操作之前,必须先执行过了assign和load操作
一个变量在同一时刻只允许一条线程对其进行lock操作,但lock操作可以被同一条线程重复执行多次,多次执行lock后,只有执行相同次数的unlock操作,变量才会被解锁。lock和unlock必须成对出现
如果对一个变量执行lock操作,将会清空工作内存中此变量的值,在执行引擎使用这个变量之前需要重新执行load或assign操作初始化变量的值
如果一个变量实现没有被lock操作锁定,怎不允许对它执行unlock操作,也不允许去unlock一个被其他线程锁定的变量
对一个变量执行unlock操作之前,必须先把此变量同步到主内存中(执行store和write操作)
并发的优势与风险
优势
速度:同时处理多个请求,响应更快;复杂的操作可以分成多个进程同时进行

设计:程序设计在某些情况下更简单,也可以更多的选择

资源利用:CPU能够在等待IO的时候做一些其他的事情

风险
安全性:多个线程共享数据时可能会产生于期望不相符的结果

活跃性:某个操作无法继续进行下去时,就会发生活跃性问题。比如死锁、饥饿等问题

性能:线程过多时会使得CPU频繁切换,调度时间增多;同步机制;消耗过多内存

线程安全性
定义:当多个线程访问某个类时,不管运行时环境采用何种调度方式或者这些线程将如何交替执行,并且在主调代码中不需要任何额外的同步或协同,这个类都能表现出正确的行为,那么就称这个类时线程安全的。

线程安全体现在以下三个方面

原子性:提供了互斥访问,同一时刻只能有一个线程来对他进行操作

可见性:一个线程对主内存的修改可以及时的被其他线程观察到

有序性:一个线程观察其他线程中的指令执行顺序,由于指令重排序的存在,该观察结果一般杂乱无序

原子性——Atomic包
AtomicXxxx:CAS、Unsafe.compareAndSwapInt

AtomicXxxx类中方法incrementAndGet(),incrementAndGet方法中调用unsafe.getAndAddInt(),getAndAddInt方法中主题是do-while语句,while语句中调用compareAndSwapInt(var1, var2, var5, var5 + var4)

compareAndSwapInt方法就是CAS核心:

在死循环内,不断尝试修改目标值,直到修改成功,如果竞争不激烈,修改成功率很高,否则失败概率很高,性能会受到影响

jdk8中新增LongAdder,它和AtomicLong比较

优点:性能好,在处理高并发情况下统计优先使用LongAdder

AtomicReference、AtomicReferenceFieldUpdater原子性更新字段(字段要求volatile修饰,并且是非static)

AtomicStampReference:CAS的ABA问题

ABA问题:变量已经被修改了,但是最终的值和原来的一样,那么如何区分是否被修改过呢,用版本号解决

AtomicBoolean可以让某些代码只执行一次

原子性——锁
synchronized:依赖jvm,作用对象的作用范围内

修饰代码块:同步代码块,大括号括起来的代码,作用于调用的对象

修饰方法:同步方法,整个方法,作用于调用的对象

修饰静态方法:整个静态方法,作用于所有对象

修饰类:括号括起来的部分,作用于所有对象

Lock:依赖特殊CPU指令,代码实现,ReentrantLock

原子性——对比
synchronized:不可中断锁,适合竞争不激烈,可读性好

Lock:可中断锁,多样化同步,竞争激烈时能维持常态

Atomic:竞争激烈时能维持常态,比Lock性能好,只能同步一个值

可见性
导致共享变量在线程间不可见的原因:

1 线程交叉执行

2 重排序结合线程交叉执行

3 共享变量更新后的值没有在工作内存与主内存间及时更新

可见性——synchronized
JMM关于synchronized的两条规定:

线程解锁前,必须把共享变量的最新值刷新到主内存

线程加锁时,将清空工作内存中共享变量的值,从而使用共享变量时需要从主内存中重新读取最新的值(注意,加锁和解锁是同一把锁)

可见性——volatile
通过加入内存屏障和禁止重排序优化来实现

1 对volatile变量写操作时,会在写操作后加入一条store屏障指令,将本地内存中的共享变量值刷新到主内存

2 随volatile变量度操作时,会在读操作前加入一条load屏障指令,从主内存中读取共享变量

使用volatile修饰变量,无法保证线程安全

volatile适合修饰状态标识量

有序性
java内存模型中,允许编译器和处理器对指令进行重排序,但是重排序过程不会影响到单线程程序的执行,却会影响到多线程并发执行的正确性

有序性——happens-before原则
1 程序次序规则:一个线程内,按照代码顺序,书写在前面的操作先行发生于书写在后面的操作

注:在单线程中,看起来是这样的,虚拟机可能会对代码进行指令重排序,虽然重排序了,但是运行结果在单线程中和指令书写顺序是一致的,事实上,这条规则是用来保证程序单在单线程中执行结果的正确性,无法保证程序在多线程中的正确性

2 锁定规则:一个unlock操作先行发生于后面对同一个锁的lock操作

3 volatile变量规则:对一个变量的写操作先行发生于后面对这个变量的读操作

4 传递规则:如果操作A先行发生于操作B,而操作B又先行发生于操作C,则可以得出操作A先行发生于操作C

前四条规则比较重要

5 线程启动规则:Thread对象的start()方法先行发生于次线程的每一个动作

6 线程中断规则:对线程interrupt()方法的调用先行发生于被中断线程的代码监测到中断事件的发生

7 线程终结规则:线程中所有的操作都先行发生于线程的终止检测,我们可以通过Thread.join()方法结束、Thread.isAlive()的返回值手段检测到线程已经终止执行

8 对象终结规则:一个对象的初始化完成先行发生于他的finalize()方法的开始

线程安全性——总结
原子性:Atomic包、CAS算法、synchronized、Lock

可见性:synchronized、volatile

有序性:happens-before规则

一个线程观察其他线程指令执行顺序,由于重排序的存在,观察结果一般是无序的,如果两个操作执行顺序无法从happens-before原则推导出来,name他们就不能保证有序性,虚拟机可以随意的对他们重排序

发布对象
发布对象:使一个对象能够被当前范围之外的代码所使用

对象逸出:一种错误的发布。当一个对象还没有构造完成时,就使它被其他线程所见

安全发布对象四种方法
1 在静态初始化函数中初始化一个对象引用

2 将对象的引用保存到volatile类型域或者AtomicReference对象中

3 将对象的引用保存到某个正确构造对象的final类型域中

4 将对象的引用保存到一个由锁保护的域中

私有构造函数,单例对象,静态工厂方法获取对象

以单例模式为例

懒汉模式:单例实例在第一次使用时进行创建(线程不安全)

懒汉模式也可以实现线程安全,给getInstance方法添加synchronized关键字(不推荐,因为性能不好)

双重同步锁单例模式:双重监测机制,在方法内部加synchronized关键字(不是线程安全的)

原因是,创建对象是,分为以下三个步骤:

1) memory = allocate() 分配对象的内存空间

2)ctorInstance() 初始化对象

3)instance = memory() 设置instance指向刚分配的内存

由于JVM和cpu优化,可能会发生指令重排:

1) memory = allocate() 分配对象的内存空间

3) instance = memory() 设置instance指向刚分配的内存

2) ctorInstance() 初始化对象

当以上面这种指令执行时,线程A执行到3 instance = memory() 设置instance指向刚分配的内存 这一步时,线程B执行if(instance == null)这段代码,此时instance != null,线程B直接return instance,导致对象没有初始化完毕就返回

解决办法就是限制对象创建时进行指令重排,volatile+双重监测机制->禁止指令重排引起非线程安全

饿汉模式:单例实例在类装载时进行创建(线程安全)

枚举模式:线程安全

不可变对象
不可变对象需要满足的条件:

对象创建以后其状态就不能修改

对象所有域都是final类型

对象是正确创建的(在对象创建期间,this引用没有逸出)

参考String类型

final关键字定义不可变对象
修饰类、方法、变量

修饰类:不能被继承

修饰方法:1.锁定方法不被继承类修改 2.效率

修饰变量:基本数据类型,数值不可变;引用类型变量,不能再指向另外一个对象,因此容易引起线程安全问题

其他实现不可变对象

Collections.unmodifiableXXX:Collection、List、Set、Map(线程安全)

Guava:ImmutableXXX:Collection、List、Set、Map

线程封闭性
线程封闭概念:把对象封装到一个线程里,只有这个线程可以看到该对象,那么就算该对象不是线程安全的,也不会出现任何线程安全方面的问题。实现线程封闭的方法:

1 Ad-hoc线程封闭:程序控制实现,最糟糕,忽略

2 堆栈封闭:局部变量,无并发问题

3 threadLocal是线程安全的,做到了线程封闭

ThreadLocal内部维护了一个map,map的key是每个线程的名称,map的值是要封闭的对象,每一个线程中的对象都对应者一个map中的值

线程封闭的应用场景:

数据库连接jdbc的Connection对象

线程不安全类与写法
字符串

StringBuilder:线程不安全

StringBuffer:线程安全

时间转换

SimpleDateFormat:线程不安全

JodaTime:线程安全

集合

ArrayList:线程不安全

HashSet:线程不安全

HashMap:线程不安全

编程注意:

if(condition(a)){handle(a)}; 不是线程安全的,因为这条判断语句不是原子性的,如果有线程共享这条代码,则会出现并发问题,解决方案是想办法这这段代码是原子性的(加锁)

线程安全——同步容器(在多线程环境下不推荐使用)
ArrayList -> Vector, Stack

Vector中的方法使用synchronized修饰过

Stack继承Vector

HashMap -> HashTable(key、value不能为null)

HashTable使用synchronized修饰方法

Collections.synchronizedXXX(List、Set、Map)

同步容器不完全是线程安全的

编程注意:如果使用foreach或者iterator遍历集合时,尽量不要对集合进行修改操作

线程安全——并发容器J.U.C(java.util.concurrent)(在多线程环境下推荐使用)
ArrayList -> CopyOnWriteArrayList:相比ArrayList,CopyOnWriteArrayList是线程安全的,写操作时复制,即当有新元素添加到CopyOnWriteArrayList时,先从原有的数组里拷贝一份出来,然后在新的数组上写操作,写完之后再将原来的数组指向新的数组,CopyOnWriteArrayList整个操作都是在锁(ReentrantLock锁)的保护下进行的,这么做主要是避免在多线程并发做add操作时复制出多个副本出来,把数据搞乱了。第一个缺点是做写操作时,需要拷贝数组,就会消耗内存,如果元素内容比较多会导致youngGC或者是fullGc;第二个缺点是不能用于实时读的场景,比如拷贝数组、新增元素都需要时间,所以调用一个set操作后,读取到的数据可能还是旧的,虽然CopyOnWriteArrayList能够做到最终的一致性,但是没法满足实时性要求,因此CopyOnWriteArrayList更适合读多写少的场景

CopyOnWriteArrayList设计思想:1读写分离 2最终一致性 3使用时另外开辟空间解决并发冲突

HashSet -> CopyOnWriteArraySet

TreeSet -> ConcurrentSkipListSet

CopyOnWriteArraySet:底层实现是CopyOnWriteArrayList

ConcurrentSkipListSet:和TreeSet 一样支持自然排序,基于map集合,但是批量操作不是线程安全的

HashMap -> ConcurrentHashMap :不允许空值,针对读操作做了大量的优化,具有特别高的并发性

TreeMap  -> ConcurrentSkipListMap :内部使用SkipList跳表结构实现的,key是有序的,支持更高的并发

安全共享对象策略——总结
1 线程限制:一个呗线程限制的对象,由线程独占,并且只能被占有它的线程修改

2 共享只读:一个共享只读的对象,在没有额外的同步情况下,可以被多个线程并发访问,但是任何线程都不能修改它

3 线程安全对象:一个线程安全的对象或容器,在内部通过同步机制来保证线程安全,所以其他线程无序额外的同步就可以通过公共接口随意访问它

4 被守护对象:被守护对象只能通过获取特定的锁来访问

不可变对象、线程封闭、同步容器、并发容器

J.U.C之AQS
AQS:AbstractQueuedSynchronizer

1 使用Node实现FIFO队列,可以用于构建锁或者其他同步装置的基础框架

2 利用了int类型表示状态

3 使用方法是继承

4 子类通过继承并通过实现它的方法管理器状态{acquire和release}的方法操纵状态

5 可以同时实现排它锁和共享锁模式(独占、共享)

AQS同步组件
1 CountDownLatch:闭锁,通过计数来保证线程是否需要一直阻塞

2 Semaphore:控制同一时间并发线程的数目

3 CyclicBarrier:和CountDownLatch相似,都能阻阻塞线程

4 ReentrantLock

5 Condition

6 FutureTask

本教程内容详尽,完整讲述了 高并发和优化方案, 资源总共6个多G

Java并发编程与高并发解决方案(完整) ho1v ,链接失效联系我更新。

发表评论

邮箱地址不会被公开。 必填项已用*标注

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据